表达有问题,应该是:
3*5*7*11*……*pn+2^k(n为自然数)中1≦k≦n,可得n个数值,其中至少含有一个素数。
确实够大胆的,猜测不成立。
2024-12-17 10:51:31
----- P1# = 3 -----
P1# + 2^1 is prime
----- P2# = 15 -----
P2# + 2^1 is prime
P2# + 2^2 is prime
----- P3# = 105 -----
P3# + 2^1 is prime
P3# + 2^2 is prime
P3# + 2^3 is prime
----- P4# = 1155 -----
P4# + 2^3 is prime
P4# + 2^4 is prime
----- P5# = 15015 -----
P5# + 2^1 is prime
P5# + 2^4 is prime
----- P6# = 255255 -----
P6# + 2^2 is prime
----- P7# = 4849845 -----
P7# + 2^4 is prime
P7# + 2^6 is prime
P7# + 2^7 is prime
----- P8# = 111546435 -----
P8# + 2^3 is prime
----- P9# = 3234846615 -----
P9# + 2^1 is prime
P9# + 2^5 is prime
P9# + 2^7 is prime
----- P10# = 100280245065 -----
P10# + 2^1 is prime
P10# + 2^3 is prime
P10# + 2^5 is prime
P10# + 2^6 is prime
P10# + 2^7 is prime
P10# + 2^10 is prime
----- P11# = 3710369067405 -----
P11# + 2^1 is prime
P11# + 2^3 is prime
P11# + 2^9 is prime
----- P12# = 152125131763605 -----
P12# + 2^4 is prime
P12# + 2^5 is prime
P12# + 2^8 is prime
P12# + 2^12 is prime
----- P13# = 6541380665835015 -----
P13# + 2^10 is prime
P13# + 2^11 is prime
----- P14# = 307444891294245705 -----
P14# + 2^1 is prime
P14# + 2^10 is prime
----- P15# = 16294579238595022365 -----
P15# + 2^11 is prime
P15# + 2^13 is prime
----- P16# = 961380175077106319535 -----
P16# + 2^1 is prime
P16# + 2^13 is prime
P16# + 2^15 is prime
----- P17# = 58644190679703485491635 -----
P17# + 2^2 is prime
P17# + 2^3 is prime
P17# + 2^12 is prime
----- P18# = 3929160775540133527939545 -----
P18# + 2^11 is prime
----- P19# = 278970415063349480483707695 -----
P19# + 2^14 is prime
----- P20# = 20364840299624512075310661735 -----
P20# + 2^2 is prime
P20# + 2^12 is prime
P20# + 2^19 is prime
----- P21# = 1608822383670336453949542277065 -----
P21# + 2^8 is prime
P21# + 2^10 is prime
----- P22# = 133532257844637925677812008996395 -----
P22# + 2^7 is prime
----- P23# = 11884370948172775385325268800679155 -----
P23# + 2^3 is prime
----- P24# = 1152783981972759212376551073665878035 -----
P24# + 2^4 is prime
P24# + 2^7 is prime
P24# + 2^19 is prime
----- P25# = 116431182179248680450031658440253681535 -----
P25# + 2^4 is prime
P25# + 2^17 is prime
P25# + 2^18 is prime
----- P26# = 11992411764462614086353260819346129198105 -----
P26# + 2^26 is prime
----- P27# = 1283188058797499707239798907670035824197235 -----
P27# + 2^21 is prime
----- P28# = 139867498408927468089138080936033904837498615 -----
P28# + 2^1 is prime
P28# + 2^3 is prime
P28# + 2^24 is prime
P28# + 2^25 is prime
----- P29# = 15805027320208803894072603145771831246637343495 -----
P29# + 2^4 is prime
P29# + 2^10 is prime
P29# + 2^14 is prime
P29# + 2^19 is prime
----- P30# = 2007238469666518094547220599513022568322942623865 -----
P30# + 2^15 is prime
P30# + 2^29 is prime
----- P31# = 262948239526313870385685898536205956450305483726315 -----
P31# + 2^10 is prime
----- P32# = 36023908815105000242838968099460216033691851270505155 -----
P32# + 2^8 is prime
P32# + 2^16 is prime
P32# + 2^20 is prime
P32# + 2^27 is prime
----- P33# = 5007323325299595033754616565824970028683167326600216545 -----
P33# + 2^4 is prime
P33# + 2^16 is prime
----- P34# = 746091175469639660029437868307920534273791931663432265205 -----
P34# + 2^16 is prime
----- P35# = 112659767495915588664445118114496000675342581681178272045955 -----
P35# + 2^29 is prime
P35# + 2^31 is prime
----- P36# = 17687583496858747420317883543975872106028785323944988711214935 -----
P36# + 2^10 is prime
----- P37# = 2883076109987975829511815017668067153282692007803033159928034405 -----
P37# + 2^3 is prime
P37# + 2^14 is prime
P37# + 2^17 is prime
P37# + 2^21 is prime
P37# + 2^33 is prime
P37# + 2^36 is prime
----- P38# = 481473710367991963528473107950567214598209565303106537707981745635 -----
----- P39# = 83294951893662609690425847675448128125490254797437431023480841994855 -----
P39# + 2^17 is prime
P39# + 2^36 is prime
----- P40# = 14909796388965607134586226733905214934462755608741300153203070717079045 -----
P40# + 2^5 is prime
P40# + 2^13 is prime
P40# + 2^15 is prime
P40# + 2^30 is prime
----- P41# = 2698673146402774891360107038836843903137758765182175327729755799791307145 -----
P41# + 2^12 is prime
P41# + 2^29 is prime
P41# + 2^30 is prime
P41# + 2^33 is prime
P41# + 2^37 is prime
----- P42# = 515446570962930004249780444417837185499311924149795487596383357760139664695 -----
P42# + 2^12 is prime
P42# + 2^32 is prime
P42# + 2^42 is prime
----- P43# = 99481188195845490820207625772642576801367201360910529106101988047706955286135 -----
----- P44# = 19597794074581561691580902277210587629869338668099374233902091645398270191368595 -----
P44# + 2^13 is prime
----- P45# = 3899961020841730776624599553164906938343998394951775472546516237434255768082350405 -----
P45# + 2^45 is prime
用时 0.01560 秒