哥德巴赫猜想吧 关注:6,466贴子:746,137
  • 12回复贴,共1

一个大胆的猜测

只看楼主收藏回复

3*5*7*11*……*pn+2^n(n为自然数)中可得n个数值,其中至少含有一个素数。
以下举例
3*5+2=17
3*5*7+2=107
3*5*7*11+2^3=1163
3*5*……*13+2=15017
3*5*……*17+2^2=255259
3*5*……*19+2^4=48496861
3*5*……*23+2^3=111546443
3*5*……*29+2=3234846617
3*5*……*31+2=100280245067
3*5*……*37+2=3710369067407
3*5*……*41+2^4=152125131763621
3*5*……*43+2^10=6541380665836039
43为p14
…………谁能举出反例?


IP属地:湖南来自Android客户端1楼2024-12-17 01:46回复
    3*5*……*47+2=307444891294248907


    IP属地:湖南来自Android客户端2楼2024-12-17 07:37
    回复
      2025-12-08 19:14:16
      广告
      不感兴趣
      开通SVIP免广告
      有时为素数有时不为素数,其意义不是很大!若一个代数表达式一定为素数才有价值!


      IP属地:湖北3楼2024-12-17 09:56
      收起回复
        表达有问题,应该是:
        3*5*7*11*……*pn+2^k(n为自然数)中1≦k≦n,可得n个数值,其中至少含有一个素数。
        确实够大胆的,猜测不成立。
        2024-12-17 10:51:31
        ----- P1# = 3 -----
        P1# + 2^1 is prime
        ----- P2# = 15 -----
        P2# + 2^1 is prime
        P2# + 2^2 is prime
        ----- P3# = 105 -----
        P3# + 2^1 is prime
        P3# + 2^2 is prime
        P3# + 2^3 is prime
        ----- P4# = 1155 -----
        P4# + 2^3 is prime
        P4# + 2^4 is prime
        ----- P5# = 15015 -----
        P5# + 2^1 is prime
        P5# + 2^4 is prime
        ----- P6# = 255255 -----
        P6# + 2^2 is prime
        ----- P7# = 4849845 -----
        P7# + 2^4 is prime
        P7# + 2^6 is prime
        P7# + 2^7 is prime
        ----- P8# = 111546435 -----
        P8# + 2^3 is prime
        ----- P9# = 3234846615 -----
        P9# + 2^1 is prime
        P9# + 2^5 is prime
        P9# + 2^7 is prime
        ----- P10# = 100280245065 -----
        P10# + 2^1 is prime
        P10# + 2^3 is prime
        P10# + 2^5 is prime
        P10# + 2^6 is prime
        P10# + 2^7 is prime
        P10# + 2^10 is prime
        ----- P11# = 3710369067405 -----
        P11# + 2^1 is prime
        P11# + 2^3 is prime
        P11# + 2^9 is prime
        ----- P12# = 152125131763605 -----
        P12# + 2^4 is prime
        P12# + 2^5 is prime
        P12# + 2^8 is prime
        P12# + 2^12 is prime
        ----- P13# = 6541380665835015 -----
        P13# + 2^10 is prime
        P13# + 2^11 is prime
        ----- P14# = 307444891294245705 -----
        P14# + 2^1 is prime
        P14# + 2^10 is prime
        ----- P15# = 16294579238595022365 -----
        P15# + 2^11 is prime
        P15# + 2^13 is prime
        ----- P16# = 961380175077106319535 -----
        P16# + 2^1 is prime
        P16# + 2^13 is prime
        P16# + 2^15 is prime
        ----- P17# = 58644190679703485491635 -----
        P17# + 2^2 is prime
        P17# + 2^3 is prime
        P17# + 2^12 is prime
        ----- P18# = 3929160775540133527939545 -----
        P18# + 2^11 is prime
        ----- P19# = 278970415063349480483707695 -----
        P19# + 2^14 is prime
        ----- P20# = 20364840299624512075310661735 -----
        P20# + 2^2 is prime
        P20# + 2^12 is prime
        P20# + 2^19 is prime
        ----- P21# = 1608822383670336453949542277065 -----
        P21# + 2^8 is prime
        P21# + 2^10 is prime
        ----- P22# = 133532257844637925677812008996395 -----
        P22# + 2^7 is prime
        ----- P23# = 11884370948172775385325268800679155 -----
        P23# + 2^3 is prime
        ----- P24# = 1152783981972759212376551073665878035 -----
        P24# + 2^4 is prime
        P24# + 2^7 is prime
        P24# + 2^19 is prime
        ----- P25# = 116431182179248680450031658440253681535 -----
        P25# + 2^4 is prime
        P25# + 2^17 is prime
        P25# + 2^18 is prime
        ----- P26# = 11992411764462614086353260819346129198105 -----
        P26# + 2^26 is prime
        ----- P27# = 1283188058797499707239798907670035824197235 -----
        P27# + 2^21 is prime
        ----- P28# = 139867498408927468089138080936033904837498615 -----
        P28# + 2^1 is prime
        P28# + 2^3 is prime
        P28# + 2^24 is prime
        P28# + 2^25 is prime
        ----- P29# = 15805027320208803894072603145771831246637343495 -----
        P29# + 2^4 is prime
        P29# + 2^10 is prime
        P29# + 2^14 is prime
        P29# + 2^19 is prime
        ----- P30# = 2007238469666518094547220599513022568322942623865 -----
        P30# + 2^15 is prime
        P30# + 2^29 is prime
        ----- P31# = 262948239526313870385685898536205956450305483726315 -----
        P31# + 2^10 is prime
        ----- P32# = 36023908815105000242838968099460216033691851270505155 -----
        P32# + 2^8 is prime
        P32# + 2^16 is prime
        P32# + 2^20 is prime
        P32# + 2^27 is prime
        ----- P33# = 5007323325299595033754616565824970028683167326600216545 -----
        P33# + 2^4 is prime
        P33# + 2^16 is prime
        ----- P34# = 746091175469639660029437868307920534273791931663432265205 -----
        P34# + 2^16 is prime
        ----- P35# = 112659767495915588664445118114496000675342581681178272045955 -----
        P35# + 2^29 is prime
        P35# + 2^31 is prime
        ----- P36# = 17687583496858747420317883543975872106028785323944988711214935 -----
        P36# + 2^10 is prime
        ----- P37# = 2883076109987975829511815017668067153282692007803033159928034405 -----
        P37# + 2^3 is prime
        P37# + 2^14 is prime
        P37# + 2^17 is prime
        P37# + 2^21 is prime
        P37# + 2^33 is prime
        P37# + 2^36 is prime
        ----- P38# = 481473710367991963528473107950567214598209565303106537707981745635 -----
        ----- P39# = 83294951893662609690425847675448128125490254797437431023480841994855 -----
        P39# + 2^17 is prime
        P39# + 2^36 is prime
        ----- P40# = 14909796388965607134586226733905214934462755608741300153203070717079045 -----
        P40# + 2^5 is prime
        P40# + 2^13 is prime
        P40# + 2^15 is prime
        P40# + 2^30 is prime
        ----- P41# = 2698673146402774891360107038836843903137758765182175327729755799791307145 -----
        P41# + 2^12 is prime
        P41# + 2^29 is prime
        P41# + 2^30 is prime
        P41# + 2^33 is prime
        P41# + 2^37 is prime
        ----- P42# = 515446570962930004249780444417837185499311924149795487596383357760139664695 -----
        P42# + 2^12 is prime
        P42# + 2^32 is prime
        P42# + 2^42 is prime
        ----- P43# = 99481188195845490820207625772642576801367201360910529106101988047706955286135 -----
        ----- P44# = 19597794074581561691580902277210587629869338668099374233902091645398270191368595 -----
        P44# + 2^13 is prime
        ----- P45# = 3899961020841730776624599553164906938343998394951775472546516237434255768082350405 -----
        P45# + 2^45 is prime
        用时 0.01560 秒


        IP属地:浙江4楼2024-12-17 10:59
        收起回复
          谢谢证伪


          IP属地:湖南来自Android客户端5楼2024-12-17 11:47
          回复
            2024-12-17 12:46:06
            ----- P1# = 3 -----
            ----- P2# = 15 -----
            P2# - 2 is prime
            ----- P3# = 105 -----
            P3# - 2 is prime
            ----- P4# = 1155 -----
            P4# - 2 is prime
            ----- P5# = 15015 -----
            P5# - 2 is prime
            ----- P6# = 255255 -----
            P6# - 2 is prime
            ----- P7# = 4849845 -----
            P7# - 2 is prime
            ----- P8# = 111546435 -----
            P8# - 2 is prime
            ----- P9# = 3234846615 -----
            ----- P10# = 100280245065 -----
            P10# - 2 is prime
            ----- P11# = 3710369067405 -----
            ----- P12# = 152125131763605 -----
            P12# - 2 is prime
            ----- P13# = 6541380665835015 -----
            ----- P14# = 307444891294245705 -----
            ----- P15# = 16294579238595022365 -----
            P15# - 2 is prime
            ----- P16# = 961380175077106319535 -----
            ----- P17# = 58644190679703485491635 -----
            ----- P18# = 3929160775540133527939545 -----
            ----- P19# = 278970415063349480483707695 -----
            P19# - 2 is prime
            ----- P20# = 20364840299624512075310661735 -----
            ----- P21# = 1608822383670336453949542277065 -----
            ----- P22# = 133532257844637925677812008996395 -----
            ----- P23# = 11884370948172775385325268800679155 -----
            ----- P24# = 1152783981972759212376551073665878035 -----
            ----- P25# = 116431182179248680450031658440253681535 -----
            ----- P26# = 11992411764462614086353260819346129198105 -----
            P26# - 2 is prime
            ----- P27# = 1283188058797499707239798907670035824197235 -----
            ----- P28# = 139867498408927468089138080936033904837498615 -----
            ----- P29# = 15805027320208803894072603145771831246637343495 -----
            ----- P30# = 2007238469666518094547220599513022568322942623865 -----
            ----- P31# = 262948239526313870385685898536205956450305483726315 -----
            ----- P32# = 36023908815105000242838968099460216033691851270505155 -----
            ----- P33# = 5007323325299595033754616565824970028683167326600216545 -----
            ----- P34# = 746091175469639660029437868307920534273791931663432265205 -----
            ----- P35# = 112659767495915588664445118114496000675342581681178272045955 -----
            ----- P36# = 17687583496858747420317883543975872106028785323944988711214935 -----
            ----- P37# = 2883076109987975829511815017668067153282692007803033159928034405 -----
            ----- P38# = 481473710367991963528473107950567214598209565303106537707981745635 -----
            P38# - 2 is prime
            ----- P39# = 83294951893662609690425847675448128125490254797437431023480841994855 -----
            ----- P40# = 14909796388965607134586226733905214934462755608741300153203070717079045 -----
            ----- P41# = 2698673146402774891360107038836843903137758765182175327729755799791307145 -----
            ----- P42# = 515446570962930004249780444417837185499311924149795487596383357760139664695 -----
            ----- P43# = 99481188195845490820207625772642576801367201360910529106101988047706955286135 -----
            ----- P44# = 19597794074581561691580902277210587629869338668099374233902091645398270191368595 -----
            ----- P45# = 3899961020841730776624599553164906938343998394951775472546516237434255768082350405 -----
            用时 0.00100 秒


            IP属地:浙江6楼2024-12-17 12:49
            收起回复
              随着数值越来越大,这个预测一定是错的


              IP属地:湖南来自Android客户端7楼2024-12-17 13:34
              回复
                因为越到后面素数越稀薄


                IP属地:湖南来自Android客户端8楼2024-12-17 13:35
                回复